

 1 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

SSI protocol specification
Version 1.0

 Owner: Jari Hyyryläinen
 Scope: Communication protocol for sensor monitoring
 Status: Stable

 2 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

Document history:

VERSION DATE Editor Change history

0.1 14/3 2003 Jari Hyyryläinen First draft
0.2 29/4 2003 “ Wirsu partner contributions added
0.3 20/5 2003 ” As agreed in meeting 14/5 at NRC
0.4 2/10 2003 “ Delay added in command ‘A’
0.5 5/12 2003 “ As agreed in meeting 5/12 ar NRC
VERSION DATE Editor / Contributor(s)
0.6 3/11 2004 Jari Hyyryläinen , Samuli Silanto, Antti

Virolainen
Commands for data streaming added,
error code added,
‘length’ two bytes in UART protocol,

0.7 22/12 2004 Jari Hyyryläinen, Martti Huttunen Number of counts added into command ’O’.
Command ‘U’ -observer finished- added.

0.8 14/1 2005 Jari Hyyryläinen, Dirk Trossen ’Min’ and ’max’ values added to ’N’.
Threshold field added to ‘O’.

1.0 11/4 2005 Iiro Jantunen RFID tag memory layout for SSI

Acknowledgements

The following persons have contributed heavily this document.

Name Company
Santtu Naukkarinen NRC
Samuli Silanto NRC
Jussi Kaasinen NRC
Antti Virolainen NRC
Dirk Trossen NRC
Iiro Jantunen NRC
Panu Kopsala Vaisala
Veikko Koivumaa Suunto
Mikko Martikka Suunto
Otto Chrons Ionific
Kimmo Rosendahl Ionific
Zach Shelby University of Oulu
Martti Huttunen University of Oulu
Matti Dahlbom Mermit
Heikki Vesalainen Mermit

 3 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

Table of contents

1. FOREWORD ...4

2. REQUIREMENTS...5

3. SSI PROTOCOL...7
3.1 SSI UART PROTOCOL ..7
3.2 SSI NETWORKING PROTOCOL...8

4. PAYLOAD..9
4.1 ADDRESS FIELD ...9
4.2 COMMAND FIELD...9

4.2.1 Query – ‘Q’ ..11
4.2.2 Query response – ‘A’ ...11
4.2.3 Discover sensors – ‘C’..12
4.2.4 Discovery reply – 'N'..12
4.2.5 Reset Sensor device – 'Z'..13
4.2.6 Get configuration data - 'G'...13
4.2.7 Configuration data response –‘X’ ...14
4.2.8 Set configuration data - 'S'...15
4.2.9 Request Sensor Data - 'R' ..15
4.2.10 Sensor Data Response – 'V'...16
4.2.11 Sensor Data Response – ‘D’ ...16
4.2.12 Create sensor observer – ‘O’ ..17
4.2.13 Observer created – ‘Y’ ..18
4.2.14 Observer finished – ‘U’...18
4.2.15 Kill sensor observer – ‘K’ ...18
4.2.16 Request sensor listener – ‘L’ ...19
4.2.17 Sensor listener created – ‘J’..19
4.2.18 Error – ‘E’ ...20
4.2.19 Free data – 'F' ...20

4.3 SENSOR ID ...21
4.4 ATTRIBUTE FIELD..21
4.5 FIELD VALUES ...21

4.5.1 Sensor Id...21
5. RFID TAG COMPATIBILITY WITH SSI ...21

5.1 MANUFACTURER DATA ...21
5.2 SENSOR DATA..21
5.3 OPTIONAL CONFIGURATION DATA ..22

APPENDIX I CRC CALCULATION ALGORITHM ...23

APPENDIX II REQUIREMENTS FOR NANOIP IMPLEMENTATION ..24

 4 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

1. FOREWORD

In this document is specified the SSI (Simple Sensor Interface) protocol structure. The SSI communications
protocol is intented to be used to transfer data between sensor unit(s) and a terminal.

In the chapter 4 are presented as an example two alternative utilisation of the SSI protocol: point-to-point (UART)
and networking (nanoIP) applications. In a point-to-point case the SSI protocol operates over a serial link (UART)
connection. This can be physical (wired) or virtual wireless Bluetooth serial port. The SSI protocol also has the
capability to be used over layer 3 networking protocols such as TCP/IP or nanoIP.

The criterion for SSI protocol development are:

• general purpose
• simple – minimal overhead
• small footprint on the server (sensor) side

The version of the SSI protocol is presented as ‘A.B’, where ‘A’ is the main version and ‘B’ is the minor version. The
dot ‘.’ between the main and minor version number is a separator, not a decimal point.

 5 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

2. REQUIREMENTS

The wireless sensor units must operate long period on a small battery. Thus the protocol must not be too complex.

The following configurations can be identified:

• The terminal can be connected into one or more sensor units through the SSI protocol
• There may be one or more sensor boards behind one communications link
• There may be one or more sensors on the sensor board

Within the reference environment the SSI protocol and the application program (client) operating on the Symbian
OS must be able to:

• Find sensor devices
• Read data from sensor devices
• Send data to sensor devices

In the reference environment below sensor data is monitored over the Bluetooth virtual serial port connection.

Figure 1. A reference environment configuration.

As a terminal can be used a Symbian based mobile phone to monitor sensor data on the sensor boards. The
mobile terminal can operate also as a gateway to obtain Internet connectivity.

Options

Wirsu sensors

Exit

Sensor 1 Temperature Sensor 2

0

150

Options

Wirsu sensors

Exit

Sensor 1 Temperature Sensor 2

0

150

Wirsu unit #1

Wirsu unit #2

RF

BB

Microcontroller

UART

Analog signals,

BT
host

processor
HCI

Embedded Bluetooth module

RF

BB

Microcontroller

UART

Analog signals,

BT
host

processor
HCI

Embedded Bluetooth module

Options

Wirsu sensors

Exit

Sensor 1 Temperature Sensor 2

0

150

Options

Wirsu sensors

Exit

Sensor 1 Temperature Sensor 2

0

150

Wirsu unit #1

Wirsu unit #2

RF

BB

Microcontroller

UART

Analog signals,

BT
host

processor
HCI

Embedded Bluetooth module

RF

BB

Microcontroller

UART

Analog signals,

BT
host

processor
HCI

Embedded Bluetooth module

RF

BB

Microcontroller

UART

Analog signals,

BT
host

processor
HCI

Embedded Bluetooth module

 6 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

Figure 2. Application implementation example within a reference environment.

The wireless link between the server (sensor unit) and the client (terminal) can be e.g. Bluetooth, BTLEE
(Bluetooth Low End Extension), UWB or any proprietary radio system.

BASEBAND

RF

LINK MANAGER

L2CAP

TCS SDP RFCOMM

VERTICAL APPLICATIONS

HCI
Symbian OS

BT HW

BT API

SENSOR API

- monitor sensor data
-send configuration data to sensors

Sensor unit

SSI protocol

UART driver

Sensor Driver

Wireless link

SSI protocol

BASEBAND

RF

LINK MANAGER

L2CAP

TCS SDP RFCOMM

VERTICAL APPLICATIONS

HCI
Symbian OS

BT HW

BT API

SENSOR API

- monitor sensor data
-send configuration data to sensors

Sensor unit

SSI protocol

UART driver

Sensor Driver

Wireless link

SSI protocol

 7 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

3. SSI PROTOCOL

This chapter describes the low-level protocol for sensor devices. The SSI protocol is asynchronous and stateless.
The SSI protocol command structure consists of three parts:

• a header
• a payload
• an optional CRC checksum.

The header structure and length may change from case to case, but the payload structure is always the same.
Here are presented two different five byte header structures; UART (point-to-point) connection and embedded
networking (nanoIP).

The SSI protocol byte order is Big Endian (most signifigant byte first).

3.1 SSI UART Protocol

SSI UART protocol is based on command messages as shown in figure 3 below. All messages use the same frame
format with a header, a message body and an optional two byte CRC checksum.

Figure 3 – SSI UART protocol command structure

Each message frame contains a 5-byte header and a varying size payload. Message header contains
• A start byte equal to 0xFE
• Length of the message in bytes
• Bitwise NOT of the length, to help identifying frame start
• Payload (Device address, Command code (a-z, A-Z), etc.)
• CRC checksum (optional)

The optional CRC checksum is present in the message frame only when the command code is written in lower
case (a-z). The CRC checksum is calculated over the payload part. The algorithm for the CRC calculation is given
in Appendix 1.

If the CRC is not correct, the message has to be ignored.

Ins Type Ins Type Attr ~Len Len Start Cmd Addr ~Len Len Start Cmd Addr Data Data crcAttr

Data included in CRC calculation

Lenght of message in bytes

Figure 4 – An example of the SSI UART protocol message

Start PayloadLen ~Len CRC

1 22 n 2

 8 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

3.2 SSI Networking Protocol

The SSI protocol also has the capability to be used over layer 3 networking protocols such as TCP/IP or nanoIP. In
this chapter only nanoIP is considered, although it is identical to apply the SSI protocol to any other socket based
network protocol. In this section the modification of the SSI UART protocol frame structure along with settings for its
use over nanoIP are introduced. The nanoIP is a minimal networking protocol for use with very limited devices over
a single subnet. The nanoIp development work is done in the University of Oulu, CWC center.

Prtcol PayloadLenH LenL CRC

1 11 n 2
Source

1
Dest.

1

Figure 5 - SSI nanoUDP message format

In the nanoIP case the five byte header consists of

• A protocol and flag byte – for nanoIP usage only
• LenH – msb byte of the payload and CRC length
• LenL – lsb byte of the payload and CRC length
• Source port number
• Destination port number (0x28)

When a node sends a packet using the SSI protocol over nanoIP, the SSI protocol frame will be encapsulated in a
nanoUDP header (5 bytes), which contains the length and 40 (0x28) for the source and destination ports.

 9 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

4. PAYLOAD

Within the SSI protocol structure the payload section does not depend upon the type of the connection. The first
byte of the payload is an address -‘Addr’- and the second byte a command –‘Cmd’. These are present within every
SSI payload structure. The other parts depend upon the command.

4.1 Address field

The address field is required to separate multiple sensor devices on a single communication device. Address field
is always present and one byte long.

Address field is always a hexadecimal number (0x00 – 0xFF). If the field value is ‘?’ (0x3F) with the ‘Query’
command it means ‘wildcard’.

4.2 Command field

The command field is one byte long thus allowing 255 different alternatives. Because each command has two
variants (with and without a CRC checksum) altogether 127 different commands are possible. The commands has
be chosen so that the command can be understood as an ASCII character, but this is not necessary. Within each
command the payload field structure is the same.

SSI protocol defines the following 18 different commands as seen in Table 1. Six commands are sent always from
the terminal (client) to the sensor unit (server). Five commands are sent always from the sensor unit to the terminal.
One command - ‘F’ – ‘Free data for custom purposes’ can be sent either by the client or server side.

Note! It is strongly advised, that the command ‘Free data for custom purposes’ is not used.

Each command has two variants, one without and another with a CRC checksum. A bit-mask of 0x20 is used to
determine whether a CRC is being used. Effectively this means that if the command byte is in lower-case (a-z), a
CRC is part of the message.

 10 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

Table 1 - SSI command messages

Command byte Dir. Description

Q,q (0x51,0x71) -> Query

A,a (0x41,0x61) <- Query reply

C,c (0x43,0x63) -> Discover sensors

N,n (0x4E,0x6E) <- Discovery reply

Z,z (0x5A,0x7A) -> Reset Wirsu device

G,g (0x47,0x67) -> Get configuration data for a sensor.

X,x (0x58,0x78) <- Configuration data response

S,s (0x53,0x73) -> Set configuration data for a sensor

R,r (0x52,0x72) -> Request sensor data

V,v (0x56,0x76) <- Sensor data response

D,d (0x44,0x64) <- Sensor response with one byte status field

O,o (0x4F,0x6F) -> Create sensor observer

Y,y (0x59,0x79) <- Observer created

K,k (0x4B,0x6B) <-> Delete sensor observer / listener

U,u (0x55,0x75) <-> Observer / listener finished

L,l (0x4C,0x6C) <- Request sensor listener

J,j (0x4A,0x6A) -> Sensor listener created

E,e (0x45, 0x65) <-> Error

F,f (0x46, 0x66) <-> Free data for custom purposes

Every command is directed at a sensor, a set of sensors or a sensor device. Sensors are identified by a 16-bit
value – Sensor Id. Sensor devices are identified by the address.
Direction (Dir.) identifies the command direction: ‘->’ means from terminal to the sensor unit and ‘<-‘ vice versa.

The group of commands

 Q – guery
 A – guery reply
 C – sensor discovery
 N – discovery reply
 Z – reset
 G - get sensor configuration
 S – set sensor configuration

are used to find and configure sensor units utilizing SSI-protocol.

The group of commands

 R – request sensor data
 V – data response
 D – data response with status field

are used to read sensor data infrequently. For data streaming purposes are defined commands

 O – create sensor observer
 Y – observer created
 K – delete observer
 U – observer finished
 L – request sensor listener
 J – sensor listener created.

 11 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

On the chapters below are described the SSI commands combined with the possible other fields. Here is seen the
‘Payload’ part only.

4.2.1 Query – ‘Q’

Addr Q/q

1 1

or

? Q/q

1 1

The ‘Query’ command is sent by the terminal to find out:

• Are there any sensor devices present?
• What SSI protocol version they are using?
• How long is the input buffer?
• How long delay there must be between successive messages?

The sensor units must be identified using the SSI protocol. The address field value ‘?’ is a wildcard.

Total length of this command structure is two bytes.

Client Server

Q

Terminal Sensor unit

A (info)

4.2.2 Query response – ‘A’

Addr A/a

1 1

Version

2
buffer size

2
 Delay

2
Reserve 2

2

The ‘Query response’ command is sent as a response to the client. The sensor unit sends a response ‘Query
response’ with the address, protocol version (2 bytes), buffer size (2 bytes) and Delay (2 bytes). A 2 byte field
‘Reserve 2’ is for the future usage.

Protocol version is described so that first byte is the main version and the second byte the minor version. As an
example the version ‘0.70’ is 0x0046.

Buffer size is the length of input buffer in bytes.

Delay is the delay value between successive messages in milliseconds. Zero value means that the messages can
be sent immediately after each other.

Total length of the ‘query reply’ is 10 bytes.

 12 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

4.2.3 Discover sensors – ‘C’

Addr C/c

1 1

This is a Discovery command. The addressed device replies with one or more `N´ command(s) identifying the
sensors it has.

Total length of the discover sensors command is two bytes.

Client Server

C

. . .
Terminal Sensor unit

N (sensor info)

N (sensor info)

4.2.4 Discovery reply – 'N'

Addr N/n

1 1

Sensor Id 1

2
Sensor desc.

16

Unit

8
Type Scaler

1 1

. . .MIn Max

44

Discovery Reply message contains information about one or more sensors. Each sensor is identified with

• Sensor Id – 2bytes
• Description – 16 byte ASCII
• Unit – 8 byte ASCII
• Type – 1 byte
• Scaler - signed 1 byte
• Min – minimum sensor reading value
• Max – maximum sensor reading value

Type Description
0x00 4-byte floating point format
0x01 Signed 32-bit integer
0x02 Non displayable configuration sensor Id

The scaler defines the number of viewed decimals for floating point numbers and 10’s exponent multiplier for
integers.

A special sensor id of 0xFFFF indicates the end of discovery replies for that particular address. However the client
application should not be dependent upon waiting the reply, and should act asynchronously.

The minimum length of the discovery reply is 38 bytes if the information of only one sensor is transferred.

 13 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

4.2.5 Reset Sensor device – 'Z'

Addr Z/z

1 1

The Reset command causes the sensor device to reset itself to a specified initial stage.

4.2.6 Get configuration data - 'G'

Addr G/g

1 1

Sensor Id 1

2
Type 1

1

Attrib1

n*
. . .Type 2

1

Attrib2

n*

or

Addr G/g

1 1

Sensor Id

2

The latter means that all the sensor configuration attributes has to be sent to the client. The attribute length (n*)
depends upon the type definition, see 5.2.7.
Only the high nibble of the type is used, the lower nibble must be set to 0x0.

Response command is 'X'.

Client Server

G

Terminal Sensor unit

X (configuration)

 14 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

4.2.7 Configuration data response –‘X’

[
Addr X/x

1 1

Sensor Id 1

2
Type 1

1

Attrib1

n*
Value 1

n*

. . .Type 2

1

Attrib2

n*
Value 2

n*

The high nibble of the type defines the attribute and the low nibble the data value (4 bytes, when integer).

Addr X/x

1 1

Sensor Id 1

2
Type 1

1

Attrib1

n*
Value 1

n*
Type 2

1

Attrib2

n*
Value 2

n*

High nibble Low nibble Attribute Value

1. byte 2. byte

On the example above the type value is ’0x21’. The attribute field is 2 bytes ASCII and the value field is 1 byte
ASCII.

Nibble Description Note
0000 Null field
0001 ASCII 1
0010 ASCII 2
0011 ASCII 4 All unused bytes in the tail are filled with 0x00.
0100 ASCII 8
0101 ASCII 16
0110 ASCII 32
0111 ASCII n ‘n’ is transferred on the 1. byte of the field in question
1000 Integer divider 1 All integer values are 2 bytes
1001 Integer divider 10
1010 Integer divider 100
1011 Integer divider 1,000
1100 Integer divider 10,000
1101 Integer divider 100,000
1110 Integer divider 1,000,000
1111 4-byte floating point format

When ASCII data is transferred on the attribute and value fields, unused bytes in the tail are filled with 0x00.
When a valid number of ASCII characters is transferred (nibble value 0x7), the number ‘n’ is on the first byte of the
attribute or value field. The value ‘n’ is presented in binary (0xXX).

All integer values are 2 bytes.

 15 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

4.2.8 Set configuration data - 'S'

Addr S/s

1 1

Sensor Id 1

2
Type 1

1

Attrib1

n*
Value 1

n*

. . .Type 2

1

Attrib2

n*
Value 2

n*

The Set Configuration Data command sets one or more sensor configuration attributes a new value. Each attribute
is identified with two byte sensor Id. The format of the attribute and value (integer, floating point) is specified on the
type field. See 5.2.7.

Response command is 'X' with the actual values of the sensor configuration attributes after the setting.

Client Server

S(configuration)

Terminal Sensor unit

X (configuration)

4.2.9 Request Sensor Data - 'R'

Addr R/r

1 1

Sensor Id1

2
Sensor Id2

2
. . .

 or

Addr R/r

1 1

The Request Sensor Data command requests the values of one or more sensors. Each sensor is identified with a
16-bit Sensor Id field. The latter means that all the sensor values has to be sent.
Response command is 'V' with the (4-byte) sensor values or ‘D’ where a status field is included.

 16 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

4.2.10 Sensor Data Response – 'V'

Addr V/v

1 1

Sensor Id 1

2
Value 1

4
. . .Sensor Id 2

2
Value 2

4

This command is used as a response to 'R' command from the client. The message body contains data for one or
more sensors. For each sensor four byte data value is returned. The unit, data type and scaler of the returned
value are defined in Discovery reply 'N’.

Client Server

R

Terminal Sensor unit

V (data)

4.2.11 Sensor Data Response – ‘D’

Addr D/d

1 1
Sensor Id 1

2
Value 1

4
. . .Status1

1
Sensor Id 2

2
Value 2

4
Status2

1

The 1 byte status field is application specific and the protocol does not care about it.

Client Server

R

Terminal Sensor unit

D (data+status)

 17 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

4.2.12 Create sensor observer – ‘O’

Addr O/o

1 1

Threshold Sensor Id 2
1 4

interval

2

multiplier

1

Count Sensor Id 2 Sensor Id 2

2 2

• interval – data interval in milliseconds, 2 bytes integer

• multiplier – 10’s exponent multiplier for rate, signed 1 byte

• count – number of sensor data messages (V) to be sent

• threshold – required sensor value change

Client Server

O

Y (id)

....

Listener Observer
V (data...)

V (data...)

V (data...)

U (id)

Command create sensor observer asks server to create data observer for set of sensors
identified with Sensor Id numbers. Server replies with command ‘Y’ and observer
identification number (1 byte integer). Observer starts to send sensor data with Sensor
Data Response ‘V’. Client takes care that is has set a listener for sensor data when create
observer command has been sent.

The interval is given in milliseconds. If the interval is zero, data has been send when new
data is valid in observer. Multiplier is signed integer defining the actual data sending
interval for the observer – observer_interval.

Observer_interval (ms) = interval (ms) x 10 ± multiplier

The count (one byte integer) informs the number of data response messages (V) the
server has to send. If the count is ‘0xFF’, the data response messages are sent
continuously and the process is stopped with the ‘Kill sensor observer’ command (K).

Threshold (four bytes) determines that the sensor value is only sent when the change
compared to the last reading exceeds the value given in threshold. The threshold is an
absolute value. The data format (4-byte floating point or integer) is the same as with the
data reading associated to the sensor. See command ‘N’ – discovery reply.

The server ends the data streaming session by sending the command ‘Observer finished’
(U) to the client.

 18 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

4.2.13 Observer created – ‘Y’

Addr Y/y

1 1

id

1

• id – Observer identification number, 1 byte integer

When server creates the data observer it sends acknowledgement followed by observer id
number.

4.2.14 Observer finished – ‘U’

Addr Addr U/u

1 1

Id

1

id – Observer identification number, 1 byte integer

The server sends ‘Observer finished’ message to the client when the data streaming
process has ended.

4.2.15 Kill sensor observer – ‘K’

AddrAddr K/k

1 1

Id

1

• id – Observer identification number, 1 byte integer

V (data...)

V (data...)

K (id)
Client

Listener

Server

ObserverU (id)

Kill sensor observer command deletes the observer bound with observer id. The client
takes care to delete the listener for particular observer. Server acknowledges by sending
‘Observer finished’ message to the client.

If server sends ‘K’ command to the client then server is requesting client to kill sensor
listener with given Id. Client confirms the listener deletion by sending command ‘U’ to the
server.

 19 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

4.2.16 Request sensor listener – ‘L’

Server can request client to create a sensor listener for coming data as is case ‘Create
sensor observer’. The server should know on which rate data would be send to the client.
When client has set a listener for incoming data it will send acknowledgement Listener
created - ‘J’ to server. After acknowledgement server can start to send data to the client.

1 1 2 2

Addr L/l Sensor Id1 Sensor Id2 ...

Client Server

L

J (id)

V (data...)
....

Listener Observer
V (data...)

V (data...)

4.2.17 Sensor listener created – ‘J’

1 1 1

Addr J/j Id

• id – listener identification number, 1 byte integer

Acknowledgement from client to server that sensor listener has been created.

 20 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

4.2.18 Error – ‘E’

AddrAddr E/e

1 1

Error code

1

or

....AddrAddr E/e

1 1

Error code

1

Sensor Id1

2

Sensor Id2

2

Error code can be send anytime from server to client or from client to server. If specific
sensor that causes error is known the sensor id can be added in error message.

General error codes:

Error code Name Description

0x00 Error Generic error

0x01 Unsupported command Client / host doesn’t support command/feature

0x02 Wrong sensor ID

0x03 Calibration failure Some sensor devices has calibration failures

0x04 Data rate too high Device doesn’t support so high data rate

0x05 Unable to create observer Server cannot create the sensor observer

0x06 Unable to create listener Client cannot create the sensor listener

Other codes are application/sensor specific.

4.2.19 Free data – 'F'

Addr F/f

1 1

Free data

n

The Free data command can be used to extend the protocol safely for custom purposes.

 21 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

4.3 Sensor Id

Sensor Id field is used to identify different sensors on the sensor unit. The sensor unit is identified by the ‘Addr’
field. Typically there is only one sensor unit under each communication link, but multiple sensor units are possible.

4.4 Attribute field

The attribute field identifies different attributes for a certain Sensor Id. See chapters 4.2.7 and 4.2.8

4.5 Field values

In this section are defined the default values for different fields.

4.5.1 Sensor Id

Sensor Id field specify the sensor unit for a special address.

The value ‘0xFFFF’ is reserved for Wirsu protocol usage. When the two most significant bits are ‘one’ (0xC000)
The sensor id field is defined as ‘group’ and ‘instance’ hierarchy. The group mask is 0x3F00 and the instance mask
0x00FF.

5. RFID TAG COMPATIBILITY WITH SSI

An RFID tag cannot support an SSI server. For reading SSI compatible RFID sensor tags, one should have a
virtual SSI server on the terminal device, which reads the appropriate sections of the memory of the RFID tag to
answer the queries of the SSI client. In this section, the layout of the memory for SSI compatibility is defined.

The memory layout of a RFID tag is defined in the ISO 18000-4 standard (see Section 5.1). Mode 1 (Passive
backscatter RFID system) is used. After the data written by the manufacturer, there is room for user data (here the
sensor value and information, see Section 5.2). The possibility of adding variable length configuration data by the
sensor owner is discussed in Section 5.3.

5.1 Manufacturer data

 Bytes Field name Written Locked
8 0x00 – 0x07 Tag ID Manufacturing Manufacturing

0x08 – 0x09 Tag manufacturer Manufacturing Manufacturing 4 0x0A – 0x0B Tag hardware type Manufacturing Manufacturing
0x0C Tag memory layout:

Embedded Application Code 6 0x0D – 0x11 Tag memory layout:
Tag Memory Map Allocation

Manufacturing or application As required by application

 0x12 – User data Application As required

Table 1. Mode 1 Tag memory map

There should be code 0x53 (for ASCII “S”) in address 0x0C (Embedded Application Code / Tag memory
layout) to define that the memory layout is SSI compliant, i.e., as the next section defines.

5.2 Sensor data

Here is assumed, that only one sensor is connected to the RFID tag. Sensor data is written to the “User data”
section in the Tag memory (from address 0x12).

 22 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

Sensor value has to be written to the EEPROM addresses 0x12 – 0x15. On the addresses 0x16 – 0x3B are
sensor specific data, which is written by the ‘sensor owner’ and must not be changed by the application. The data
is here assembled to 8 byte blocks for the convenience of using ISO 18000-4 commands.
The status of the sensor is written in byte address 0x19, where the bit 0 indicates the status of the sensor data. As
the sensor is powered up by the reader, the status bit is zero. After the sensor has written the data in the byte
address 0x12 – 0x15, the status bit is toggled to one. This is the indication to the reader that the sensor value is
valid. After the reader has read the sensor data, it should overwrite the status bit with zero.

 Byte

address
Field name Type Description Example

0x12 – 0x15 Sensor value 4 byte
HEX

Variable sensor value 0x00000014

0x16 Type 1 byte
HEX

Describes the type of the Sensor value
(0x00 = floating point, 0x01 = signed
integer…)

0x01

0x17 Multiplier 1 byte
HEX

 0x00

0x18 Status 1 byte
HEX

Sensor status. Bit 0 indicates if the sensor
value (0x12 – 0x15) is valid data (bit 0 =
1) or not yet valid (bit 0 = 0). Seven bits
are free for future use.

0x01
8

0x19 Empty 1 byte For future use. Could be, e.g., number of
sensors on RFID tag.

16 0x1A – 0x29 Sensor description 16 byte
ASCII

Constant sensor description “Temperature
sensor”

8 0x2A – 0x31 Unit 8 byte
ASCII

Constant unit description. All unused
bytes in the tail are filled with 0x00.

“C ”

0x32 – 0x35 Minimum value 4 byte
HEX

Minimum value the sensor can provide. 0x00000000

8 0x36 – 0x3B Maximum value 4 byte
HEX

Maximum value the sensor can provide. 0x00000064

0x3C Activate sensor 1 byte Bits 0 – 7 will be written by the reader to
request the tag to write the sensor data

0x01

4 0x3D –
0x3F

Sensor control 3 bytes Not defined yet. Could be, e.g., time
needed before sensor value is valid.

n 0x40 – Configuration data n bytes Optional, see next section.

Table 2. Sensor data mapping to the Tag memory

5.3 Optional configuration data

Here is an example configuration data memory layout based on the configuration data on SSI specification. The
data addresses are variable due to the variable length of the data. Type fields could contain information on the
length and type of both attributes and data, as shown in Chapter 4.2.7 “Configuration data response”.

Byte address Field name Type Description
A1 Type 1 1 byte First half-byte could describe

Attribute 1, second half-byte
Value 1.

(A1+1) –
(A1+N1)

Attribute 1 N1 bytes

Type could be ASCII, integer
or float.

(A1+1+N1) –
(A1+N1+M1)

Value 1 M1 bytes Type could be ASCII, integer
or float.

A2 =
A1+N1+M1+1

Type 2 … …

 23 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

APPENDIX I CRC CALCULATION ALGORITHM

The CRC is calculated over the Payload section, see the figure below.

CRC-Computation

All operations are assumed to be on 16 bit unsigned integers. The least significant bit is on the right. The algorithm
is:

Initialize the CRC to Zero. For each character beginning with the address up to the lenght end of the string but not
including the two bytes of CRC itself.

{
 Set the CRC equal to the exclusive OR of the character and itself
 for count =1 to 8
 {
 if the least significant bit of the CRC is one
 {
 right shift the CRC one bit
 set CRC equal to the exclusive OR of 0xA001 and itself
 }
 else
 {
 right shift the CRC one bit
 }
 }
}

Ins Type Ins Type Attr ~Len Len Start Cmd Addr ~Len Len Start Cmd Addr Data Data crcAttr crc

Data included in CRC calculation

Lenght of string

 24 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

APPENDIX II REQUIREMENTS FOR NANOIP IMPLEMENTATION

The SSI protocol also has the capability to be used over layer 3 networking protocols such as TCP/IP or nanoIP. In
this chapter only nanoIP is considered, although it is identical to apply the SSI protocol to any other socket based
network protocol. In this section the modification of the SSI UART protocol frame structure along with settings for its
use over nanoIP are introduced. In addition the networking architecture for using SSI over nanoIP is explored.

The modifications needed to modify the protocol in Chapter 4 for use over nanoIP are straightforward. The changes
include the following:

1. Removal of the start, len and ~len fields from the frame.

2. The addr field is still included in case there are multiple identical sensor sets on the same device.

3. NanoIP is used for providing length and address information.

4. Standard socket port 40 is used for identifying the SSI protocol.

5. NanoUDP is used by default.

When a node sends a packet using the SSI protocol over nanoIP, the SSI protocol frame will be encapsulated in a
nanoUDP header (5 bytes) which contains the length and 40 for the source and destination ports.

A reference network architecture for WIRSU project

The basic internal architecture of nodes is shown in Figure 1. The SSI protocol runs over the socket interface of
the nanoIP stack in all types of nodes. In addition, a WIRSU application programmers interface (API) is employed
in browing devices.

 25 (25)

NRC / CAR
Jari Hyyryläinen, Iiro Jantunen 11/4 2005

SSI protocol specification_10a-2.doc

Figure 1. Architecture of phase III demo devices

WIRSU Protocol

GUI Browser

WIRSU API

7650

nanoIP
Socket

BT or BTLEE

WIRSU Protocol

Text Browser

WIRSU API

Laptop or iPAQ

nanoIP
Socket

BT or BTLEE

WIRSU Protocol

sensors

sensor

nanoIP
Socket

BT or BTLEE

sym
bian

linux

M
sp430 or AVR

WIRSU Protocol

GUI Browser

WIRSU API

7650

nanoIP
Socket

BT or BTLEE

WIRSU Protocol

GUI Browser

WIRSU API

7650

nanoIP
Socket

BT or BTLEE

WIRSU Protocol

Text Browser

WIRSU API

Laptop or iPAQ

nanoIP
Socket

BT or BTLEE

WIRSU Protocol

Text Browser

WIRSU API

Laptop or iPAQ

nanoIP
Socket

BT or BTLEE

WIRSU Protocol

sensors

sensor

nanoIP
Socket

BT or BTLEE

WIRSU Protocol

sensors

sensor

nanoIP
Socket

BT or BTLEE

sym
bian

linux

M
sp430 or AVR

