Differential Evolution for High-Dimensional Function Optimization
Notes
- DE:
- parameters:
: vector dimension;
: population size;
: crossover rate;
: scaling factor;
- citations: 1, 2, 5, 6, 7, 8;
- parameters:
- CC:
- problem decomposition;
- subcomponent optimization;
- cooperative combination;
- scheme DE/rand/1/bin:
- mutation:
differential variation: ;
;
- crossover:
;
- selection:
;
- where:
: uniform random between and ;
- citations: 1, 8;
- mutation:
- NSDE the same as DE/rand/1/bin but with the following amendments:
- mutation:
;
- where:
: Gaussian random with mean and standard deviation ;
: Cauchy random with scale parameter ;
- citations: 14, 15, 16, 17;
- mutation:
- SaNSDE:
auto-adapted parameters: , ;
- citations: 5, 8;
- DECC:
- parameters:
: fitness evaluations;
: sub-component dimension (between 30 and 100);
- DECC-I:
- the parameter permutation is constant throughout the cycles;
- a weight is evolved (in parallel with the components) for the components;
- DECC-II:
- the permutation is randomized at the beginning of each cycle;
- there is no need for the component weights;
- parameters:
- non-separable functions:
- citations: 9, 10;
- benchmarks without DECC:
- parameters:
: 30;
- runs: 25;
- conclusion: SaNSDE better than NSDE; NSDE better than DE;
- citations: 15, 18, 17, 19;
- parameters:
- benchmarks with DECC:
- parameters:
: 500 or 1000;
: 100 (fixed);
: 2m or 5m;
- runs: 25;
evaluation: the fitness of an individual was estimated by combining it with the current best individuals from other subcomponents;
- conclusion: DECC-I is better (not by much) than DECC-II;
- citations: 9, 10;
- parameters:
Citations
1: Differential Evolution -- A Simple and Efficient Heuristic Strategy for Global Optimization over Continuous Spaces; R. Storn, K. Price; 1997;
2: A Comparative Study of Differential Evolution, Particle Swarm Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems; J. Vesterstrom, R. Thomsen; 2004;
5: A Parameter Study for Differential Evolution; R. Gamperle, S. D. Muller, P. Koumoutsakos; 2002;
6: Critical values for the control parameters of differential evolution algorithms, D. Zaharie; 2002;
7: Self-adaptive Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems; J. Brest; 2006;
8: Self-adaptive Differential Evolution Algorithm for Numerical Optimizations; A. K. Qin, P. N. Suganthan; 2005;
9: Scaling Up Fast Evolutionary Programming with Cooperative Coevolution; Y. Liu, Q. Zhao, T. Higuchi; 2001;
10: A cooperative co-evolutionary approach to function optimization; A. M. Potter, K. A. De Jong; 2994;
11: A blended population approach to cooperative coevolution for decomposition of complex problems; D. Sofge, K. A. De Jong, A. Schultz; 2002;
13: Cooperative Co-evolutionary Differential Evolution for Function Optimization; Y. Shi, H. Teng, Z. Li; 2005;
18: Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization; P. N. Saughatan; 2005;
19: Real-Parameter Optimization with Differential Evolution; J. Ronkkonen, S. Kukkonen, K. V. Price; 2005;